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Abstract

While the four-pole approach is a very convenient concept in modeling acoustic systems, its application has been limited

mainly to systems composed of only one-dimensional (1-D) and lumped parameter elements due to the difficulty in

formulating four poles of three-dimensional (3-D) cavities. In this work, an experimental procedure is developed to obtain

four poles of a 3-D cavity from the measured pressure response functions. The procedure is validated by comparing the

four poles obtained experimentally for a rigid-walled rectangular cavity with those obtained by analytical and numerical

procedures. Establishing an experimental procedure for four-pole formulation is significant as it enables application of the

four-pole approach to virtually any acoustic systems. The concept of hybrid modeling, which is building the system model

by combining experimental, numerical and analytical models, is demonstrated through a simple example as the best

application of the four-pole approach.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The four-pole method presents the equation of an acoustic system by the relationship between the harmonic
pressure and volume velocity pairs at the input and output ports in the frequency domain. The cascading
property resulting from this setup enables not only efficient computation but also easy integration of sub-
system models formulated by various different approaches. Despite these advantages, application of the
approach has been largely limited to systems composed of lumped parameter and one-dimensional (1-D)
acoustic elements partially due to the difficulty in formulating four poles of three-dimensional (3-D) cavities.

An experimental method is an attractive option to formulate four pole parameters because it can be applied
to any general acoustic systems. To and Doige [1,2] first developed an experimental procedure to measure four
pole parameters of acoustic systems based on the two-load method. Lung and Doige [3] generalized the
approach to acoustic systems with the presence of a significant mean flow. The two-load method was prone to
errors in the low-frequency range. Later, Munjal and Doige [4] developed an improved method that they
called the two-source location method, which is similar to the method developed in this paper. In their
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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method, four-pole parameters are calculated from the pressures measured at the input and output ports of the
system and at two more points in the 1-D pipes attached to the system. As the four poles of the pipes are
known in exact forms, the relationship between each pair of the measured pressures provides one equation
without increasing the number of unknowns. These equations are solved to obtain the four poles of the
system. However, the equations can become ill-conditioned especially at low frequencies resulting in the
relatively large errors seen in Refs. [3,4], which is because the perturbed system obtained by attaching a pipe is
not sufficiently distinct acoustically from the original system.

Kim and Soedel [5] proposed a procedure to formulate four poles of a general acoustic system in terms of
pressure response functions of the blocked system. As the procedure formulates four poles in terms of pressure
response functions, any analytical, numerical or experimental method that obtains pressure response functions
can be used to implement the procedure. Wu and Zhang [6] implemented the procedure using the boundary
element method (BEM) to formulate four poles of expansion mufflers. Later, Zhou and Kim [7] used the mode
superposition method to obtain four poles of a rectangular cavity, and pointed out the difficulty in implementing
an analytical procedure to 3D systems due to the singularity at the source point. They showed that a surface
source model has to be used to obtain a bounded pressure response solution at the source point [7].

Kulkarni et al. [8] developed an experimental procedure. The procedure essentially duplicates the theoretical
procedure proposed by Kim and Soedel [5] experimentally. In the method, pressure response functions are
obtained as the ratios of the pressures to the volume velocity measured by the two-microphone method. When
the method was applied to a 1-D pipe, the method provided accurate results in a broad frequency range. One
drawback of the procedure is that it cannot be used for systems with a significant mean flow because it requires
measurement of blocked pressure response functions. However, the simplicity and accuracy of the procedure
makes it an excellent choice for systems with a relatively low mean flow, which is the case of most 3-D cavities.

In this paper experimental, analytical and numerical methods are applied to an identical 3-D cavity to
compare the four poles obtained by the three methods to validate the experimental method developed by
Kulkarni et al. [8] A rectangular hard-walled cavity, one of very few 3-D systems whose pressure response
solutions can be obtained by all three methods, was built for this purpose. Comparing the four poles obtained
by these three methods also helps to understand the limitations and merits of the three methods.

Among the three approaches, the analytical approach is the most cost-effective to implement; however is
limited to only a few simple systems. The experimental approach is the most general; however the most
expensive and time consuming. A numerical model provides an option between them. Formulation of the
system model by optimally combining the four poles obtained by the three approaches is an attractive option
to analyze complex acoustic systems. Enabling such a hybrid modeling was the motivation of this work.

2. Formulation of four poles of 3-D cavities

For the acoustic system shown in Fig. 1, the four-pole equation is defined as

Q1

P1

( )
¼

A B

C D

� �
Q2

P2

( )
, (1)

where subscript 1 and 2 indicate the input and output ports, Q and P are the complex harmonic amplitudes of
the volume flow velocity and pressure, and A, B, C, and D are called four poles [9]. Kim and Soedel showed
that the four poles could be formulated from the pressure response functions as follows [5]:

A ¼
f 22

f 21

; B ¼
1

f 21

; C ¼ �f 12 þ
f 11

f 12

f 22; D ¼
f 11

f 12

, (2)

where fij is the pressure induced at the port i in response to the unit volume flow input to the port j while the
other port is closed. For example, f12 is the pressure induced at the input port location by the unit volume flow
input to the output port while the input port is blocked. Eq. (2) implies that four poles of any acoustic systems
can be derived if its pressure response functions are known.

A hard-walled rectangular box is one of very few 3-D systems whose pressure response functions
can be formulated by all three methods, i.e., theoretical, numerical, and experimental methods. A rectangular
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Fig. 2. The rectangular cavity used in the study.
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Fig. 1. Schematic representation of an acoustic system.
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hard-wood box shown in Fig. 2 is chosen in this study to compare the four poles formulated based on
analytical, numerical and experimental pressure response functions. The system parameters are given as
follows:
(1)
 Dimensions of the cavity: Lx ¼ 0.2794m, Ly ¼ 0.3302m, and Lz ¼ 0.2286m.

(2)
 Acoustic medium: density r0 ¼ 1.21 kg/m3, speed of sound c0 ¼ 343m/s (standard air).

(3)
 Input point location: (r1) ¼ (xs1, ys1, zs1) ¼ (0, 0.0762, 0.0381)m

(4)
 Output point location: (r2) ¼ (xs2, ys2, zs2) ¼ (Lx, 0, 1778, 0.1524)m.

(5)
 The cross-section of the input and output pipes, the source surface, is a square section of

0.0195m� 0.0195m.
2.1. Analytical formulation of four poles

The pressure response functions of the cavity can be obtained by solving the non-homogeneous wave
equation [5,10] for the given mass flow source distribution _m,

r2p�
1

c20

q2p
qt2
¼ �

q _m
qt

, (3)

where p is the acoustic pressure and c0 is the speed of sound. The source surface is shown in Fig. 3; therefore
the mass flow can be described as follows:

_m ¼ r0
Q0

bscs

dðx� xsÞ H y� ys þ
bs

2

� �
�H y� ys �

bs

2

� �� �

� H z� zs þ
cs

2

� �
�H z� zs �

cs

2

� �h i
ejot. ð4Þ

where d( � ) is the Dirac delta function, H( � ) is the unit step function and Q0 is the total input volume flow. It is
assumed that the source strength is uniform over the source surface.
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Fig. 3. Geometry of the surface source [7].
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Assuming the rigid boundary condition on the surface, the pressure response solution can be obtained as
follows by applying the mode superposition method to Eq. (3) [7]:

Pðx; y; z; xs; ys; zsÞ

Q0

¼
jr0c20o

bscs

X1
l¼0

X1
m¼0

X1
n¼0

Plmnðx; y; zÞ cosðlpxs=LsÞCmCn

Nlmn½ðo2
lmn � o2Þ þ 2joolmnxlmn�

, (5)

where x,y,z define the field point and xs, ys, zs define the source point, and,

Cm ¼

bs if m ¼ 0;
2Ly

mp
cos

mpys

Ly

sin
mpbs

2Ly

if ma0;

8><
>: (6)

Cn ¼

cs if n ¼ 0;
2Lz

np
cos

npzs

Lz

sin
npcs

2Lz

if na0:

8<
: (7)

Plmn ¼ cosðlp=LxÞ cosðmp=LyÞ cosðnp=LzÞ; olmn and xlmn are the lmnth mode shape, natural frequency and
modal damping ratio. Nlmn ¼

R
V

Plmnðx; y; zÞ
2dV .

f11 and f12 are obtained by substituting (xs, ys, zs) ¼ (xs1, ys1, zs1) to Eq. (5), i.e.:

f 11 ¼
Pðxs1; ys1; zs1; xs1; ys1; zs1Þ

Q0

; f 12 ¼
Pðxs1; ys1; zs1; xs2; ys2; zs2Þ

Q0

. (8)

With (xs, ys, zs) ¼ (xs2, ys2, zs2), f21 and f22 are obtained as follows:

f 21 ¼
Pðxs2; ys2; zs2; xs1; ys1; zs1Þ

Q0

; f 22 ¼
Pðxs2; ys2; zs2; xs2; ys2; zs2Þ

Q0

. (9)

As f12 ¼ f21, only three pressure response solutions are independent.
The infinite series in Eq. (5) is approximated by a finite series by taking a sufficiently large number of

terms up to the mode number N. Solutions converge rather quickly for f12 and f21 but very slowly for f11 and
f22 in general. This difficulty is expected if it is considered that f11 and f22 are source point impedances that
become infinite for the point source case [11]. The general form of the pressure response to a point source in
the cavity is

pðr; tÞ ¼ jr0o
Q

4pr
ejðot�krÞ þ Xðr; tÞ, (10)

where r is the distance from the source point to the filed point and X(r, t) is a function that represents the
reverberation effect in the cavity. As X(r, t) is finite, it is clear that the pressure response at the source point,
where r ¼ 0, will become infinite. Thus, convergence of the pressure solution is very slow, especially when the



ARTICLE IN PRESS
P. Kadam, J. Kim / Journal of Sound and Vibration 307 (2007) 578–590582
dimension of the source is small compared to the other dimensions of the cavity and the wavelength of
interest. Fig. 4 shows f12 and f11 as functions of N, the upper limit of the modes, used in the mode
superposition. For example, f11 in Fig. 4 corresponding to N ¼ 10 is the value obtained by using 103 modes.
As one can see, 64 terms (N ¼ 4) provide satisfactory convergence for f12. For f11, N ¼ 30 (303, 27,000 modes)
at 100Hz, 40 (403, 64,000 modes) at 500Hz, and 120 (1203, about 1.7 million modes) at 1000Hz are necessary
to obtain converged solutions.

How to define the pressure response function is another problem because the pressure over the source
surface is not constant. Fig. 5 shows the distribution of the pressure on the source surface at the frequency of
100Hz. The pressure response function is calculated by the average pressure value as follow [7]:

f ii ¼
Pavg

Q
¼

R
S

PðrÞdA=bscs

Q
. (11)
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Fig. 4. Pressure response of three-dimensional cavity to surface source: (a) at far-field point, (b) at source point, 100Hz,

500Hz, � 1000Hz.
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2.2. Numerical formulation of four poles

A numerical procedure such as the finite element method (FEM) or BEM can be used to obtain the pressure
response functions of 3-D cavities. In this case also, the source modeling presents a similar difficulty as in the
analytical formulation, which requires to use a very fine mesh on the source surface. This problem can be
avoided by attaching a short pipe each at the input and output ports as seen in Fig. 6. Because a plane wave
develops in the pipe, the pressure on the source surface becomes nearly uniform.

After finding the four poles of the entire system composed of the cavity and the pipes, four poles of the
cavity can be found using the cascading property of four poles. Four poles of the entire system are:

AT BT

CT DT

" #
¼

Ap1 Bp1

Cp1 Dp1

" #
A B

C D

� �
Ap2 Bp2

Cp2 Dp2

" #
. (12)

On the right-hand side of Eq. (12), the first and third matrices are the four poles of the pipes attached to the
cavity at the input and output sides, and the second matrix is the four poles of the cavity that we are trying to
find. The four poles of the 1-D pipe are known in exact forms as follows [12]:

Api Bpi

Cpi Dpi

" #
¼

cos kLpi

jSi sin kLpi

r0c0
jr0c0 sin kLpi

Si

cos kiLpi

2
6664

3
7775. (13)

where i ¼ 1,2, k ¼ o/c0 is the wavenumber, c0 is the speed of sound, Lpi is the length of the pipe, r0 is the
density of the acoustic medium. After finding the four poles AT, BT, CT, and DT, of the entire system from the
FEM analysis, the four poles of the cavity are easily obtained as follows:

A B

C D

� �
¼

Ap1 Bp1

Cp1 Dp1

" #�1
AT BT

CT DT

" #
Ap2 Bp2

Cp2 Dp2

" #�1
. (14)

Because the volume flow velocities in the inlet pipe and outlet pipe have to be measured in the experimental
formulation, the setup shown in Fig. 6 is what is used in the experimental procedure also.
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Fig. 6. Finite element model of the system.
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2.3. Experimental formulation of four poles

Fig. 7 shows the three microphone setup used in this work to measure four poles. Four poles measured
from this setup are the four poles of the system composed of the pipes of length Lp1 and Lp2 attached to
the cavity. Notice that Lp1 and Lp2 are effective lengths of the pipes, which include the end corrections to
account for the attached mass effect at the end of pipes. The procedure explained in Eq. (14) of the previous
section can be applied exactly the same way to obtain the four poles of the cavity from the system four poles
that will be measured. The configuration shown in Fig. 7 is to measure f11 and f21. The pair of microphones in
the driving side measures the particle velocity (Ui ¼ Qi/S) and the pressure Pi, and the microphone at the
closed end side measures the pressure Pj. Two pressure response functions are obtained from this setup as
follows:

f 11 ¼
Pi

Qi

; f 21 ¼
Pj

Qi

, (15)

where Qi is the volume flow velocity at the input location. The other two pressure response functions, f22 and
f12, are estimated by repeating the measurement after swapping the pipes. Lp1 and Lp2 have to be kept the same
for this swapping method possible.

The volume velocity necessary to measure the pressure response functions is calculated from the particle
velocity measured by the two-microphone method [13,14]. Referring to Fig. 8, the pressure in the pipe has two
traveling wave components as follows:

pðx; tÞ ¼ ðPþe
�jkx þ P�e

jkxÞejot. (16)

Microphones 1 and 2 measure total pressures; therefore;

P1 ¼ Pþ þ P�; P2 ¼ Pþe
�jks þ P�e

jks, (17)

where P1 and P2 are the pressures measured by microphones 1 and 2 and s is the spacing between them.
Rearranging Eq. (17), it can be shown that the ratio between the pressure amplitudes of the backward and
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forward traveling waves is

R ¼
P�

Pþ
¼

P2=P1 � e�jks

ejks � P2=P1
. (18)

The pressure ratio P2/P1 can be estimated from the transfer function between the two microphones, H12,
because:

H12 ¼
P2P

�
1

P1P
�
1

¼
P2

P1
. (19)
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After R is estimated, the volume velocity at the location of microphone 1 can be found:

Q1 ¼ SU ¼ S
Pþ � P�

rc
¼ S

Pþ þ P�

rc

Pþ � P�

Pþ þ P�
¼ S

2P1

rc

1� R

1þ R

� �
. (20)

Now with Q1 available, the pressure response function f21 is obtained as

f 21 ¼
P3

Q1

¼
P3

P1

P1

Q1

¼ f 11H13, (21)

where H13 is the transfer function between the microphone 1 at the inlet and microphone 3 at the out port. As
discussed by Chung and Blaser [13,14], the sensor switching technique can be used to eliminate the phase-
mismatch error in estimating the cross-spectral density, that is

H12 ¼ ðH12 H
0

12Þ
1=2, (22)

where prime indicates transfer functions measured after switching two microphones.
A study of the singular condition of pressure reflection coefficient by Chung and Blaser [13,14] has shown

that pressure reflection coefficient in Eq. (18) becomes indeterminate as H12�e
jks
¼ 0 at the discrete

frequencies at which the microphone spacing is an integer multiple of the half-wavelength of the signal. In
order to avoid this condition up to the frequency fm, the microphone spacing s must be chosen such that:

sp
c

2f m

, (23)

where c is the speed of sound and fm is the cutoff frequency. The microphone spacing of 6.3 cm was chosen in
this work which give a cutoff frequency of 2722Hz.

3. Four poles of 3-D cavities

3.1. Comparison of four-poles obtained by three methods

Four poles of the rectangular cavity obtained by three different methods are compared in Fig. 9. In the
analytical and numerical calculations, 0.5% modal damping ratio was chosen arbitrarily to account for the
damping effect. The three sets of four poles show quite good agreements to one another. Much better
agreement is observed between the numerical and analytical four poles, which are expected because the same
modal damping ratio was used in both analyses. The large difference between the measured four poles and
the analytical and numerical four poles observed in the very low-frequency range, up to 30Hz, is considered
due to the finite difference approximation employed in estimating the particle velocity. Damping effect, which
was not accurately modeled, is believed to have caused the difference observed in most of the frequency range.
The 770Hz, at which the differences between the models are more pronounced, is the resonance frequency of
the two pipes attached to the cavity as the effect of damping is magnified at this frequency.

While no accurate error analysis is possible, comparison of the pole A provides an estimation of the
accuracy of the three procedures. We consider a hypothetical case that the cavity is driven at the input port
and the output port is exposed to the open air, which is approximately described by Eq. (1) with P2 ¼ 0.
Notice that this pressure release condition is physically not realizable. The condition will be satisfied only
approximately at very low frequencies where the radiation impedance becomes small. In such a case, the pole
A represents the transfer function Q1/Q2, which is the insertion loss of the system, which is driven by an ideal
constant flow source. Judging from the pole A in Fig. 9a, the transfer functions estimated by the three different
methods will be within 1–2 dB from each other in most of the frequency range except around 770Hz. This
observation indicates that the experimental method provides accurate results enough to be used in practice.

As it can be seen in the comparison, the method provides accurate results in a broad frequency range.
Kulkarni et al. reported that the method obtained more accurate results in the low-frequency range unlike the
method developed by Doige and his colleagues [1–4], which showed large errors at low frequencies. The
accuracy may be attributed to the simplicity of the procedure. The measurement of flow velocities by the two-
microphone method is the only part that involves sizable errors in the procedure; therefore the valid frequency
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range of the procedure is nearly the same as that of the two-microphone method. However, the procedure
cannot be applied to systems with high mean flows, which is one obvious drawback.

3.2. Hybrid system modeling: an application example

The cascading property is what makes the four-pole approach truly useful. Using the four-pole method,
models of various elements in the system can be obtained by any of the analytical, numerical or experimental
methods, and are then integrated to form the system model. For example, in an automotive exhaust system,
four poles may be formulated analytically for simple elements such as short pipes or small volumes,
numerically for a large cavity that has a large cross-sectional area, thus a small mean flow velocity, which has
complex geometry but with well defined boundary conditions such as expansion chambers in the muffler, and
experimentally for hard-to-model elements such as a cavity filled with porous material or a catalytic converter
section, then combined to obtain the system four pole equation.

As a simple demonstration, we consider a situation that we have to design a small muffler to be attached to
the output side of the rectangular cavity we used in this study. As shown in Fig. 10, it is further assumed that
the small muffler has a 10% of the volume of the cavity, and we want to compare the three designs shown in
Table 1. Again, it is noted that the lengths shown include the end correction effect; therefore are effective
lengths. The system model can be made by combining the four poles we measured for the cavity with the
analytical four poles of the small volume and pipes. Four poles of a 1-D pipe are given in Eq. (13). The four-
pole relationship of a small volume cavity is given by [12]:

Q1

P1

( )
¼

1
joV 0

r0c20
0 1

2
4

3
5 Q2

P2

( )
, (24)

where V0 is the volume of the cavity. The overall four pole of the original system in Fig. 10a can be obtained
by multiplying the four pole matrices of the inlet pipe, cavity and the outlet pipe. The four poles of the system
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shown in Fig. 10b can be obtained by multiplying 5 four-pole matrices of the pipe Lin, the large cavity, the pipe
L1, the small volume and the pipe L2.

The transfer function to compare the performances of the three designs is defined as follows:

TF ¼ 20log10
Q1

Q2

� �
¼ 20 log

1

AT

, (25)

where Q1 and Q2 are input and output volume velocities into and out of the system, respectively, and AT is the
pole A of the overall system. Fig. 11 shows the TF of the three designs compared with the baseline design, the
cavity without the muffler shown in Fig. 10a.

Design simulations changing analytical parts of the model, the muffler and 1-D pipes, can be conducted as
many times as necessary at virtually no cost. Four poles of the 3-D cavity will have to be obtained only when



ARTICLE IN PRESS
P. Kadam, J. Kim / Journal of Sound and Vibration 307 (2007) 578–590 589
the new design calls for a different input/output locations and/or a new cavity. Once the procedure is
established, experimental formulation of the four poles can be completed in a matter of few hours, which
requires an effort necessary comparable to typical numerical analyses. In fact, the approach will take
considerably less time than numerical analysis for a very complicated system, not to mention that the result
will be more accurate.
4. Conclusions

Since Kim and Soedel [5] proposed it, the procedure to formulate four poles of a general acoustic system in
terms of pressure response solutions was applied to 3-D cavities using analytical [7] and numerical methods [6].
In this work, an experimental approach is developed to implement the procedure to measure four poles of a
3-D cavity. The four poles obtained from the experimental procedure are compared with those obtained by
analytical and numerical methods to validate the experimental approach for the first time. A rectangular box
built with hard wood walls, one of a few 3-D systems that allow all three approaches, is used as the model for
this purpose.

In the analytical approach, pressure response solutions of the rectangular cavity, which are necessary to
formulate four poles, are obtained by solving the non-homogeneous wave equation using the mode
superposition method. It is shown that a very large number of modes are required to obtain a converged
pressure response solution at the source point as reported in Ref. [7]. In the numerical approach, pressure
response solutions are obtained by using the finite element method. It is shown that the four poles obtained
from the numerical and analytical approaches agree very well with each other. In the experimental approach,
the pressure response functions are measured using three microphones. The four poles obtained from the
experiment agree quite well with those obtained from the analytical and numerical methods, which validates
the experimental method.

The main advantage of the experimental method for four-pole formulation is that it can be applied to any
acoustic systems. Further, the experimental method developed in this work is so simple that it requires less
efforts and time than typical numerical methods if the system becomes very complex. Therefore, the most
useful application of the four-pole method will be experimental–analytical–numerical hybrid modeling in that
the system equation is formulated by integrating the four poles of sub-systems obtained by, respectively,
different method. The approach will be very useful in deign simulations of complex, large-scale acoustic
systems. Through a simple application example, such a hybrid modeling concept is demonstrated.
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